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Abstract

This paper describes the design and implementation of a
new parallel programming environment called Parsley, which
provides �ne-grained scheduling services based on the struc-
ture of the application programs. In Parsley, application
programs are divided into subtasks which may run seri-
ally or in parallel. Parsley provides a programming inter-
face that allows a user to de�ne subtasks and to specify
the precedence constraints among them. According to this
speci�cation, the Parsley system schedules subtasks and al-
locates processors. Thus, the subtasks are executed in a
dependence-driven manner. We developed a parallel molec-
ular dynamics simulation program based on the Parsley
mechanism and executed it on a scalable multiprocessor
system. We achieved good scalability and showed that our
system is e�cient for large-scale molecular dynamics simu-
lation.

Key Words: parallel programming environments, re-
source management, scheduling, molecular dynamics simu-
lation, computational chemistry

1 INTRODUCTION

There are many parallel computing environments that sup-
port resource management services, which lack in the exist-
ing message-passing libraries such as PVM and MPI. For ex-
ample, distributed job-management and process-management
systems such as Condor [7], Utopia [12], and PRM [1] pro-
vide 
exible load-sharing services for heterogeneous, large-
scale distributed systems. CARMI [8] provides a general
framework for resource management. It provides a 
exible
structure that can support a variety of policies and aims
at scalable resource management. DRMS [14] provides the
means for application programs to specify their resource re-
quirements and performs run-time program migration and
data redistribution according to the speci�ed requirements.
Although some of these systems provide resource manage-
ment facilities based on the applications' resource require-
ments, their resource allocation policies are restricted and
load balancing is performed for tasks or processes that are
almost independent.

VDCE [2] and HeNCE [5] use the dependencies of tasks
for the resource allocation. They each provide a graphical
interface that lets the user specify the dependencies used to
control the allocation of resources. They di�er from Parsley
with regard to the granularity of tasks: VDCE and HeNCE
provide only task-level (process-level) scheduling, whereas
Parsley can perform subtask-level (described later) schedul-

ing for the single-program, multiple-data (SPMD) environ-
ment. More �nely-grained parallelism can be achieved by
an approach that exploits application-speci�c parallelism
speci�ed by a language compiler or an application program.
DUDE [6] and Chores [4] are run-time systems that sched-
ule nested loops on multiprocessors. They perform dependence-
driven scheduling by using information about data depen-
dencies or control dependencies between iterations passed
from compilers. These run-time systems are able to pro-
vide �ne-grained, dynamic resource allocation according to
the application program structure, but they need language
compiler cooperation and are applicable only to speci�c
program structures (e.g., nested loops). In MARS [13],
a dependency graph is built from an application program
and is used for the process-level scheduling. MARS also
gathers statistical data on the behavior of the application
programs by monitoring the CPU work load and commu-
nication time. Such historical information is e�ective in
improving the scheduling policies and is also used in our
system.

In this paper we describe the design and implemen-
tation of a new parallel programming environment called
Parsley, which provides �ne-grained resource management
services that re
ect the structure of the application pro-
grams. In Parsley, application programs are divided into
subtasks which may run serially or in parallel. A user
can de�ne subtasks according to the application's structure
without considering the size of subtasks for load balancing.
Parsley provides a programming interface that allows a user
to de�ne subtasks and to specify the precedence constraints
among them. Parsley uses these constraint's to determine
the order in which subtasks are executed (schedules sub-
tasks) and assigns subtasks to the processors. The sub-
tasks are thus, executed in a dependence-driven manner.
Dependence-driven execution is similar to the data-driven
execution used in data-
ow models except that the control
dependencies as well as the data dependencies are used in
determining the execution sequence. Its asynchrony results
in a high degree of concurrency. Parsley also makes it easy
to develop parallel programs because it performs load bal-
ancing automatically at execution time. We developed a
parallel molecular dynamics (MD) simulation program for
the dependence-driven execution mechanism of Parsley and
ran it on a scalable multiprocessor system, the HITACHI
SR2201.
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2 SYSTEM DESIGN

2.1 System Architecture

Figure 1 shows the architecture of our current implementa-
tion of the Parsley system. It is implemented on the MPI,
which provides the interprocess communication facilities.
In NOW (network of workstation) it exchanges state in-
formation between workstations, but in parallel computers
its function is very restricted: it simply monitors the exe-
cution time of subtasks and provides resource use statistics
useful for higher-layer policy modules. The policy mod-
ules provide resource management policies as well as the
resource allocation policies. The task management service
(TMS) provides the mechanisms of resource allocation for
the MPI tasks. This module is useful for resource sharing
in distributed systems. The subtask management service
(SMS) is a key module for the �ne-grained, dependence-
driven scheduling described in this paper. This module is
used for multiprocessors that employ SPMD style parallel
processing as well as for conventional distributed systems.
Its functions are described in the following sections.
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Figure 1: System architecture.

2.2 Programming Models

Application programs are divided into multiple subtasks
that may run serially or in parallel. Normally, there are
some precedence constraints that must be enforced. A typ-
ical precedence constraint is that one subtask needs to use
the results of one or more other subtasks. Parsley provides
a programming interface that lets the user de�nes subtasks
and specify their precedence constraints.

The programming model is based on a master-slave
model (Figure 2). A master manages a pool of subtasks,
called the subtask pool, and assigns subtasks in the pool to
available slave processors according to the speci�ed prece-
dence constraints. A subtask becomes ready for execution
when its immediate predecessors have already been exe-
cuted; and if it does not have any predecessors, it is always
ready for execution. When a processor completes a sub-
task, it noti�es the master, and the master assigns to it the
next ready subtask in the subtask pool. Since the processor
allocation is performed dynamically, the de�nition of each
subtask is independent of physical processors.
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subtask subtask subtask

subtask subtask

subtask subtask
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Figure 2: Subtask execution based on a master-slave model.

MPI_Recv(,,,source_rank,,)

MPI_Send(,,,dest_rank,,)

execution

result

request

Figure 3: Slave-program structure in MPI.

Figure 3 and 4 show the slave program structures for
SPMD programming. In both, a master processor sends the
request, which consists of an operation code and parame-
ters, to a slave processor. The program in slave processors
has a loop structure: It receives the request, executes it,
and then replies to the master. In this context a subtask
is de�ned as a prede�ned set of operations that each slave
processor executes in accordance with the request from the
master processor. In Parsley, Parsley Send/Parsley Recv

primitives are used to send/receive messages. These primi-
tives correspond to MPI Send/MPI Recv primitives but they
specify the subtask ID, not the rank of MPI processes, as the
destination of the message passing. Inter-subtask commu-
nication is translated into MPI message-passing primitives
at execution time. Note that the execution mechanism of
Parsley itself can also be applied to conventional tasks or
processes. In this paper, however, we apply it to an SPMD
programming model for implementing e�cient parallel pro-
cessing on a massively parallel computer.

Figure 5 shows the example of how the user register
subtasks and speci�es subtask dependencies. A user reg-
isters a subtask by using the Create Subtask() primitive
and the system assigns a subtask ID that uniquely iden-
ti�es a subtask. A user speci�es the dependency between
subtasks by using Set Subtask Dependency() to specifying
these subtask IDs.
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Figure 4: Slave-program structure in Parsley.

The Parsley systems maintains the following data struc-
ture for each subtask:

� a predecessors list (PL) containing the subtask IDs of
its predecessors

� a successors list (SL) containing the subtask IDs of its
successors

� user-de�ned control information which includes the
operation of the subtask and the scope of the shared
data (physically replicated) that the subtask manipu-
lates

� statistical data about resource use (used for subtask
scheduling).

.

.

.
i1 = Create Subtask();
i2 = Create Subtask();
i4 = Create Subtask();

.

.

.
Set Subtask Dependency(i1,i4);
Set Subtask Dependency(i2,i4);

.

.

.

Figure 5: Subtasks creation and dependency speci�cation.

Parsley constructs this data structure when a user de-
�nes subtasks and speci�es their precedence constraints.
For example, the system adds subtask IDs to PLs and SLs
according to the user-speci�ed subtask dependencies. For
applications in which precedence constraints are determined
as execution proceeds, the subtask data structure is con-
structed dynamically at execution time.

2.3 Subtassk Scheduling

2.3.1 Passing the execution result

Two of the schemes that might be used for passing the ex-
ecution result of each subtask to its immediate successors
are the following:

� A slave sends the result back to the master, and then
the master sends it to the successors.

� A slave sends the result directly to the successors.

Although the �rst scheme is simpler in that a slave need not
maintain the execution result after the subtask execution,

we use the second scheme to reduce the load on the master.
In this scheme, when a subtask is completed, the execution
result is temporarily stored in the slave. Note that at this
time the destination processor, to which the execution result
will be passed, is not determined if the successor subtask is
not assigned to a processor. In our design, when a slave
begins executing a subtask, it tries to get the execution
results of its predecessors.

2.3.2 Granularity of subtasks

The granularity of subtasks greatly a�ects the performance:
too small and the master is too busy allocating processor,
too large and the e�ect of load balancing is reduced. It is
easy for a programmer to divide a program into subtasks
based on the original application algorithm. In some appli-
cations, however, such a straightforward approach may be
ine�cient. Parsley provides a mechanism allocating multi-
ple consecutive subtasks to a processor at run time. When
the subtasks are small, they are dynamically combined at
run time in a manner that provides the best performance.
Although the current implementation is very restricted, we
are designing a more general and powerful framework for
changing subtask granularities dynamically.

2.3.3 Scheduling policies

The dynamic processor allocation in Parsley can provide
dynamic load balancing in a given hardware environment,
but the current processor allocation policy is very simple:
it allocates any available processors to any ready subtasks
in a FIFO order. Performace can be improved by using
a processor-allocation policy that considers the calculation
and communication times of the subtasks. In addition, dy-
namic load balancing incurs on the overhead for transferring
the execution request to the busy processor. We therefoe
use static scheduling when a whole set of subatasks and
their dependencies are known in advance. The Parsley sys-
tem measures the calculation and communication times of
subtasks and uses this information for the scheduling for
the next run of the same application. We extended the
CP/MISF algorithm [3] with distributed-memory multipro-
cessor systems by combining the communication time with
the calculation time of each subtask.

3 PARALLELMOLECULAR DYNAMICS

SIMULATION ON PARSLEY

3.1 Molecular Dynamics Simulation

Molecular dynamics (MD) simulations are widely used for
simulating the motion of molecules in order to gain a deeper
understanding of the chemical reactions, 
uid 
ow, phase
transitions, and other physical phenomena due to molecular
interactions. In this simulation of a continuous process is
broken down into discrete small timesteps, each which is
an iteration has two parts: force calculation (calculating
the forces from the evaluated conformational energies) and
atom update (calculating new coordinates of the molecules).

3.2 Parallel Programming on Parsley

There are two popular parallel MD simulation algorithms:
atom decomposition (AD) [10] and space decomposition
(SD) [9]. In AD each processor is assigned a subset N=P of
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N atoms (P is the number of processors), and it updates
each atom's position throughout the simulation. It dis-
tributes atoms among the processors evenly, thus achieving
static load balancing, but it requires global communication
for exchanging forces and atomic positions. In SD the sim-
ulation domain is usually broken into P subdomains (cells),
and each processor computes forces on only the atoms in its
subdomain. In the large N limit, this algorithm scales opti-
mally as N=P , since each processor needs only information
from processors that are assigned neighboring subdomains.
The SD algorithm allows atoms to migrate between subdo-
mains in order to maintain the locality of force calculation.
Owing to its low communication cost, the SD algorithm
usually performs better than the AD algorithm [11] . So we
used the SD algorithm in present study. An important prob-
lem with the SD algorithm is the load imbalance caused by
nonuniform atom density, which is typical of bio-molecules
(e.g., proteins) surrounded by solvent water molecules. Fig-
ure 6(a) shows a such load imbalance in the SD algorithm.
The subtasks for the force calculation and atom update in
each timestep must be synchronized with each other.

Figure 6(b) shows an example of dependence-driven
scheduling in Parsley for the same set of subtasks as in Fig-
ure 6(a). No barrier synchronization is required. A subtask
can start its execution when all the predecessors complete
their executions. High concurrency is obtained because the
precedence constraints in the SD simulation are limited to
subtasks of neighboring subdomains. Thus Parsley MD sim-
ulation proceeds asynchronously.

Figure 7 shows a part of subtask dependencies in the SD
algorithm. Force calculation subtasks of timestep t send the
results only to their successors (atom updating subtasks of
timestep t). In the SD algorithm each subtask's successors
are limited to subtasks of neighboring subdomains. The
atom updating subtasks of timestep t can start execution
without synchronization when they receive the results of
their predecessors.

3.3 Results

We ran the simulation for a system consisting of one BPTI
(bovine pancreatic trypsin inhibitor) protein surrounded by
water molecules, and comprising a total of 16; 375 atoms.
Our MD simulation used the SD algorithm, and in the
BPTI's simulation space was divided into 125 5 � 5 � 5
cells. Thus, force calculation and atom update were decom-
posed to 125 subtasks per timestep. Figure 8 is a log-log
plot of the computational time (seconds) for 10 timesteps.
The solid line shows the ideal (perfectly linear) speedup.
We mean by the ideal speedup that the computation time
for P processors is 1=P of that for a single processor.

As can be seen in the Figure 8, for from 1 to 16 pro-
cessors the SD simulation is more e�cient than the Parsley
simulation. As the number of processors increases, how-
ever, the Parsley simulation becomes more e�cient than
the SD simulation. For 125 processors, the Parsley simula-
tion is 3.49 times faster than the SD simulation and is 30.4
times faster than the simulation ran on a single processor.
The performance degradation of the SD simulation for 16
- 125 processors is explained as follows. E�cient load bal-
ancing requires that number of simultaneously executable
subtasks be su�ciently greater than number of processors.
Load balancing becomes less e�ective, when the number of
processors is close to the number of decompositions.

Figure 9 shows the details of the execution time. "Cal-
culation" time in the �gure includes time for calculation of
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Figure 8: Performance of Parsley MD simulation and SD
MD simulation (BPTI + water).
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Figure 9: Details of execution times (BPTI + water).

the bonded forces and the nonbonded forces. "Other" in-
cludes the time for system processes such as memory alloca-
tion. As can be seen in this �gure, for 125 processors, the SD
algorithm's communication time is greater than that of the
Parsley MD simulation. This di�erence is due to the load
imbalance caused by nonuniform atomic densities. Parsley
does not need barrier synchronization and can execute sub-
tasks (force calculation and atom update) asynchronously,
so load balancing is e�ective even when the number of pro-
cessors is close to the number of decompositions.

3.4 E�ect of Improving the Scheduling Pol-

icy

Parsley measures the execution time of subtasks and uses
the results to improve the scheduling policy for the next
execution of the program, and the consequent e�ect of the
improvement for the MD simulation is shown by the values
listed in Table 1. The initial policy is one that assumes
all the subtasks have the same execution time. The im-
proved policy (which uses the information about the previ-
ous execution times) performs better, but the improvement
is rather small. This is because the basic scheduling pol-
icy does not consider the communication cost, which varies
according to the number of processors allocated to the sub-
tasks.
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Figure 6: Processor utilization in (a) Parsley MD and (b) conventional parallel MD.

ID:13 energy

ID:1 force ID:2 force ID:3 force ID:4 force ID:5 force ID:6 force ID:7 force ID:8 force ID:9 force

ID:10 update ID:12 updateID:11 update

ID:14 force ID:16 force ID:20 forceID:17 force ID:18 forceID:15 force ID:19 force ID:21 force ID:22 force

ID:26 energyID:25 updateID:24 updateID:23 update

Step t

Step t+1

Figure 7: Subtask dependencies in a molecular dynamics simulation.

4 CONCLUSIONS

Application-speci�c dynamic parallelism is a key to high-
e�ciency parallel programs. Since the programmer is aware
of the application-speci�c parallelism, it seems to be very
e�ective for the programmer to pass such information to the
run-time scheduling system. Unlike the conventional run-
time scheduling systems that are coupled with compilers,
our system allows a user to decompose an application pro-
gram into subtasks and specify the precedence constraints
between subtasks. It provides a more general framework
for resource allocation and supports a much wider range of
parallel applications. The Parsley system is very portable
because it is implemented in C language and on MPI li-
braries, and it is now available on the HITACHI SR2201, the
IBM SP/2, the Sun Ultra Enterprise 10000 (STAR FIRE),
and the NEC Cenju. The dynamic load balancing and au-
tomatic improvement of scheduling policies can adopt the
load balancing to the hardware environments.

We have developed, in addition to the MD simulation

described in this paper, several computational chemistry ap-
plications such as the fast multipole method [15] and molec-
ular mechanics internal coordinates. We found it is easy to
describe the subtasks and their precedence constraints in
Parsley. In this paper we have shown that our system is e�-
cient for large-scale MD simulation and has good scalability.
We are going to apply our system to more complicated ap-
plications such as multi-timestep MD and to the MD with
the solvent-e�ect calculation. We think that our system will
be even more e�ective for these applications because they
include many di�erent kinds of subtasks of various sizes.
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